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In other words ps+1 (which can depend on ¢;) is trading off being
“good” for £;, while at the same time remaining close to p;.
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This view of the problem is closely related to the following setting
in online algorithms:

» At each time step t the algorithm maintains a state iy € [n].

» Upon the observation of a loss function ¢; : [n] — R the
algorithm can update the state to jz41.

» The associated cost is composed of a service cost ¢¢(ir+1) and
a movement cost d(i¢, iz+1) (d is some underlying metric on
[n])-

» Typically interested in competitive ratio rather than regret.

Connection: If j; is played at random from p;, and consequent
samplings are appropriately coupled, then the term we want to

bound
-

-
Z(ft, Pe+1—q) + Z 1Pt = Pe1ll1,

t=1 t=1

exactly corresponds to the sum of expected service cost and
expected movement when the metric is trivial (i.e., d = 1).
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Gradient descent/regularization approach

A natural algorithm to consider is gradient descent:

Xe+1 = X — 0l
which can equivalently be viewed as
. 1 2
Xer1 = argmin(x, £¢) + —||x — x¢||5 .

xXERN 277
This clearly does not seem adapted to our situation where we
want to measure movement with respect to the £1-norm.
Side comment: another equivalent definition is as follows, say with
x1 =0,

Xey1 = argmin(x ZZ ]xH2
xER" s<t

This view is called “Follow The Regularized Leader” (FTRL)
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Theorem (BCLLM17)

The above differential inclusion admits a (unique) solution
x : Ry — X provided that K is a compact convex set, ¢ is
strongly convex, and V2® and ¢ are Lipschitz.
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Lemma
The mirror descent path (x(t))¢>o satisfies for any comparator

point y, Da(ve (0
10 x(0) - yyee < “’(ynx(”

Thus to control the regret it only remains to bound the movement
cost fteﬂh |x'(t)||1dt (recall that this continuous time setting is

only valid for the 1-lookahead setting, i.e., MTS).
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How to control ||x'(t)||1 = |[(V2®(x(t))) " (nl(t) + A(t))|1? A
particularly pleasant inequality would be to relate this to say
nl(t) - x(t), in which case one would get a final regret bound of
the form (up to a multiplicative factor 1/(1 — n)):

Do (y; x(0)) -

Ignore for a moment the Lagrange multiplier )\(t) and assume that

d(x) =31 p(x;). We want to relate Y7 £;(t)/¢"(xi(t)) to
Som 1 Li(t)xi(t). Making them equal gives <D( ) = >, xilog x; with
corresponding dynamics:

x(t) = —mxi()(Ei(1) + (D).

In particular ||x'(t)[|1 < 2nf(t) - x(t).
We note that this algorithm is exactly a continuous time version of
the MW studied at the beginning of the first lecture.



The more classical discrete-time algorithm and analysis
Ignoring the Lagrangian and assuming ¢'(t) = 0 one has

0 Do(yi x(1)) = V2O (x(1))[x'(t), X' (1)] = n* (V20 (x(£))) " (1), (1)] -



The more classical discrete-time algorithm and analysis
Ignoring the Lagrangian and assuming ¢'(t) = 0 one has

0 Do(yi x(1)) = V2O (x(1))[x'(t), X' (1)] = n* (V20 (x(£))) " (1), (1)] -

Thus provided that the Hessian of ® is well-conditioned on the
scale of a mirror step, one expects a discrete time analysis to give
a regret bound of the form (with the notation

[hllx = /V2(x)[h, h])

)

Do (y; x1

Dolyixt) 4 5~ a2...
n t=1



The more classical discrete-time algorithm and analysis
Ignoring the Lagrangian and assuming ¢'(t) = 0 one has
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Thus provided that the Hessian of ® is well-conditioned on the
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a regret bound of the form (with the notation
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Do (y; x1
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Theorem
The above is valid with a factor 2/c on the second term, provided
that the following implication holds true for any y; € R",

Vo(ye) € [VO(xt), VO(xt) — nl] = V2D(y;) = cV2d(x;).

For FTRL one instead needs this for any y; € [x¢, Xe+1].
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Let ®(x) = >_7 ;(xilogx; — x;) and K = A,. One has
V&(x) = log(x;) and thus the update step in the dual looks like:

VO(y:) = VO(xt) — 0l < yie = xip exp(—nle(i)) .

Furthermore the projection step to K amounts simply to a
renormalization. Indeed VDo (x,y) = >.7_; log(x;/yi) and thus

p = argmin Do (x, y) < 3u € R :log(pi/yi) = u, Vi € [n].
x€EA,

The analysis considers the potential Do (i*, pt) = — log(p:(i*)),
which in fact exactly corresponds to what we did in the second
slide of the first lecture.

Note also that the well-conditioning comes for free when (i) > 0,
and in general one just needs ||n¢|lo to be O(1).
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Key idea: replace ¢; by /; such that E; p,¢; = {;. The propensity
score normalized estimator is defined by:

Ce(it)
pe(i)

The Exp3 strategy corresponds to doing MW with those
estimators. Its regret is upper bounded by,

Gy = i = i)

Ez<pt_q;€t>:EZ<pt_q7Z>§ +77EZH£ Hpt*v

where Hh”,%* = Y7, p(i)h(i)%. Amazingly the variance term is
automatically controlled:

I " 1{i=i
Eiope S pe()ie()? < Bipp 30 LU =0t _
i=1

1 Pt(/t)

Thus with n = y/nlog(n)/ T one gets Rt < 2+/Tnlog(n).



Simple extensions

» Removing the extraneous +/log(n)

Contextual bandit

v

Bandit with side information

v

v

Different scaling per actions



More subtle refinements

» Sparse bandit

» Variance bounds

» First order bounds

> Best of both worlds

» Impossibility of v/ T with switching cost
» Impossibility of oracle models

» Knapsack bandits



