Lecture 2:
Mirror descent and online decision making

Sébastien Bubeck
Machine Learning and Optimization group, MSR Al

Microsoft’

Research

Stability as an algorithmic guiding principle

Recall that we are looking for a rule to select p; € A, based on
l1,...,0i—1 € [-1,1]", such that we can control the regret with
respect to any comparator g € Ap:

T
Z gt: Pt — q
t=1

Stability as an algorithmic guiding principle

Recall that we are looking for a rule to select p; € A, based on
l1,...,0i—1 € [-1,1]", such that we can control the regret with
respect to any comparator g € Ap:

T
Z gt: Pt — q
t=1

In the game-theoretic approach we saw that the movement of the
algorithm, Zthl llpt — pr+1ll1, was the key quantity to control.

Stability as an algorithmic guiding principle

Recall that we are looking for a rule to select p; € A, based on
l1,...,0i—1 € [-1,1]", such that we can control the regret with

respect to any comparator g € A,:

T
Z gt: Pt — q
t=1

In the game-theoretic approach we saw that the movement of the

algorithm, Zthl llpt — pr+1ll1, was the key quantity to control. In
fact the same is true in general up to an additional “1-lookahead”

term:

T T T
Y (bepe—a) <Y (beprir— @) + Y llpe — pesal -
t=1 t=1 t=1

Stability as an algorithmic guiding principle

Recall that we are looking for a rule to select p; € A, based on
l1,...,0i—1 € [-1,1]", such that we can control the regret with

respect to any comparator g € A,:

T
Z gt: Pt — q
t=1

In the game-theoretic approach we saw that the movement of the

algorithm, Zthl llpt — pr+1ll1, was the key quantity to control. In
fact the same is true in general up to an additional “1-lookahead”

term:

T T T
Y (bepe—a) <Y (beprir— @) + Y llpe — pesal -
t=1 t=1 t=1

In other words ps+1 (which can depend on ¢;) is trading off being
“good” for £;, while at the same time remaining close to p;.

Metrical task systems [Borodin, Linial, Saks 1982]
This view of the problem is closely related to the following setting
in online algorithms:

Metrical task systems [Borodin, Linial, Saks 1982]
This view of the problem is closely related to the following setting
in online algorithms:

» At each time step t the algorithm maintains a state iy € [n].

Metrical task systems [Borodin, Linial, Saks 1982]
This view of the problem is closely related to the following setting
in online algorithms:

» At each time step t the algorithm maintains a state iy € [n].

» Upon the observation of a loss function ¢; : [n] — R the
algorithm can update the state to jz41.

Metrical task systems [Borodin, Linial, Saks 1982]
This view of the problem is closely related to the following setting
in online algorithms:
» At each time step t the algorithm maintains a state iy € [n].
» Upon the observation of a loss function ¢; : [n] — R the
algorithm can update the state to jz41.

» The associated cost is composed of a service cost ¢¢(ir+1) and
a movement cost d(i¢, iz+1) (d is some underlying metric on

[n])-

Metrical task systems [Borodin, Linial, Saks 1982]
This view of the problem is closely related to the following setting
in online algorithms:

» At each time step t the algorithm maintains a state iy € [n].

» Upon the observation of a loss function ¢; : [n] — R the
algorithm can update the state to jz41.

» The associated cost is composed of a service cost ¢¢(ir+1) and
a movement cost d(i¢, iz+1) (d is some underlying metric on

[n]).

» Typically interested in competitive ratio rather than regret.

Metrical task systems [Borodin, Linial, Saks 1982]
This view of the problem is closely related to the following setting
in online algorithms:

» At each time step t the algorithm maintains a state iy € [n].

» Upon the observation of a loss function ¢; : [n] — R the
algorithm can update the state to jz41.

» The associated cost is composed of a service cost ¢¢(ir+1) and
a movement cost d(i¢, iz+1) (d is some underlying metric on
[n])-

» Typically interested in competitive ratio rather than regret.

Connection: If j; is played at random from p;, and consequent
samplings are appropriately coupled, then the term we want to

bound
-

-
Z(ft, Pe+1—q) + Z 1Pt = Pe1ll1,

t=1 t=1

exactly corresponds to the sum of expected service cost and
expected movement when the metric is trivial (i.e., d = 1).

Gradient descent/regularization approach

A natural algorithm to consider is gradient descent:

Xt41 = Xt — 77£t,

Gradient descent/regularization approach

A natural algorithm to consider is gradient descent:
Xe+1 = X — 0l

which can equivalently be viewed as

. 1
Xe+1 = argmin(x, ;) + 2—||x — Xt||% .
xeRn n

Gradient descent/regularization approach
A natural algorithm to consider is gradient descent:
Xe+1 = X — 0l

which can equivalently be viewed as

. 1
Xe+1 = argmin(x, ;) + 2—||x — Xt||% .
xeRn n

This clearly does not seem adapted to our situation where we
want to measure movement with respect to the £1-norm.

Gradient descent/regularization approach

A natural algorithm to consider is gradient descent:

Xe+1 = X — 0l
which can equivalently be viewed as
. 1 2
Xer1 = argmin(x, £¢) + —||x — x¢||5 .

xXERN 277
This clearly does not seem adapted to our situation where we
want to measure movement with respect to the £1-norm.
Side comment: another equivalent definition is as follows, say with
x1 =0,

Xey1 = argmin(x ZZ]xH2
xER" s<t

This view is called “Follow The Regularized Leader” (FTRL)

Mirror Descent (Nemirovski and Yudin 87)

Mirror Descent (Nemirovski and Yudin 87)

Mirror map/regularizer: convex function ® : D D K — R.
Bregman divergence: Do(x;y) = ®(x) — ®(y) — VO(y) - (x — y).
Note that VDo (x;y) = VO(x) — VP(y).

Mirror Descent (Nemirovski and Yudin 87)

Mirror map/regularizer: convex function ® : D D K — R.
Bregman divergence: Do(x;y) = ®(x) — ®(y) — VO(y) - (x — y).
Note that VDo (x;y) = VO(x) — VP(y).

gradient
step

Dg-projection
D

D*

Continuous-time mirror descent
Assume now a continuous time setting where the losses are

revealed incrementally and the algorithm can respond
instantaneously: the service cost is now ftER+ {(t) - x(t)dt and the
movement cost is [, [[X'(t)[l1dt.

Continuous-time mirror descent
Assume now a continuous time setting where the losses are

revealed incrementally and the algorithm can respond
instantaneously: the service cost is now ftER+ {(t) - x(t)dt and the
movement cost is [, [[X'(t)[l1dt.

Denote Nk(x) ={0:0-(y —x)) <0, Yy € K} and recall that

x* € argmin f(x) & —VF(x*) € Nk(x¥)
xeK

Continuous-time mirror descent
Assume now a continuous time setting where the losses are

revealed incrementally and the algorithm can respond
instantaneously: the service cost is now ftER+ {(t) - x(t)dt and the
movement cost is [, [[X'(t)[l1dt.

Denote Nk(x) ={0:0-(y —x)) <0, Yy € K} and recall that
x* € argmin f(x) & —VF(x*) € Nk(x¥)
xeK

x(t+¢e) = argg;{in Do (x, VO*(VP(x(t)) — enl(t)))

Continuous-time mirror descent
Assume now a continuous time setting where the losses are

revealed incrementally and the algorithm can respond
instantaneously: the service cost is now ftER+ {(t) - x(t)dt and the
movement cost is [, [[X'(t)[l1dt.

Denote Nk(x) ={0:0-(y —x)) <0, Yy € K} and recall that
x* € argmin f(x) & —VF(x*) € Nk(x¥)

xeK

x(t+¢e) = argg;{in Do (x, VO*(VP(x(t)) — enl(t)))

& VO(x(t +¢)) — VO(x(t)) + enf(t) € —Nx(x(t +€))

Continuous-time mirror descent
Assume now a continuous time setting where the losses are

revealed incrementally and the algorithm can respond
instantaneously: the service cost is now ftER+ {(t) - x(t)dt and the
movement cost is [, [[X'(t)[l1dt.

Denote Nk(x) ={0:0-(y —x)) <0, Yy € K} and recall that

x* € argmin f(x) & —VF(x*) € Nk(x¥)
xeK

x(t+¢e) = argg;{in Do (x, VO*(VP(x(t)) — enl(t)))

& VO(x(t+¢)) — VO(x(t)) + enl(t) € —Nk(x(t +¢))
& V20(x(t))X'(t) € —nl(t) — Nk (x(t)

Theorem (BCLLM17)

The above differential inclusion admits a (unique) solution
x : Ry — X provided that K is a compact convex set, ¢ is
strongly convex, and V2® and ¢ are Lipschitz.

The basic calculation
V2o(x())X (t) = —nl(t) — A(t), A(t) € Nk(x(t))

The basic calculation
V2o(x())X (t) = —nl(t) — A(t), A(t) € Nk(x(t))
Recall Dg(y; x) = ®(y) — ®(x) — VO(x) - (v — x),

The basic calculation
V2o(x())X (t) = —nl(t) — A(t), A(t) € Nk(x(t))
Recall Do(y; x) = ®(y) — ®(x) — VO(x) - (y — x),

)-
9:Do(y; x(t)) =V2O(x(1))x'(1) - (v — x(1))
(n(t) + A(t)) - (v = x(2))

né(t) - (y = x(t))

IAN I

The basic calculation
V2o(x())X (t) = —nl(t) — A(t), A(t) € Nk(x(t))

Recall Do(y; x) = ®(y) — ®(x) — VO(x) - (y — x),
9:Do(y; x(t)) = —V2O(x(£))X(t) - (v — x(t))
= (n(t) + A1) - (v — x(t))
<

ne(t) - (y = x(t))

Lemma
The mirror descent path (x(t))¢>o satisfies for any comparator

point y,
Do (y; x(0))
n

/ (t) - (x(t) - y)dt <

The basic calculation
V2o(x())X (t) = —nl(t) — A(t), A(t) € Nk(x(t))
Recall Do(y; x) = ®(y) — ®(x) — VO(x) - (y — x),

0eDo(yix(t)) = —V2O(x(£))X(t) - (v — x(t))
= (nf(t) + A1) - (v = x(1))
< nl(t) - (y = x(1))

Lemma
The mirror descent path (x(t))¢>o satisfies for any comparator

point y, Da(ve (0
10 x(0) - yyee < “’(ynx(”

Thus to control the regret it only remains to bound the movement
cost fteﬂh |x'(t)||1dt (recall that this continuous time setting is

only valid for the 1-lookahead setting, i.e., MTS).

Controlling the movement and how the entropy arises

How to control ||x'(t)||1 = |[(V2®(x(t))) " (nl(t) + A(t))|1? A
particularly pleasant inequality would be to relate this to say
nl(t) - x(t), in which case one would get a final regret bound of
the form (up to a multiplicative factor 1/(1 — n)):

Do (y; x(0)) -

Controlling the movement and how the entropy arises

How to control ||x'(t)||1 = |[(V2®(x(t))) " (nl(t) + A(t))|1? A
particularly pleasant inequality would be to relate this to say
nl(t) - x(t), in which case one would get a final regret bound of
the form (up to a multiplicative factor 1/(1 — n)):

Do (y; x(0)) -

Ignore for a moment the Lagrange multiplier A(t) and assume that
d(x) =31 p(x;). We want to relate Y7 £;(t)/¢"(xi(t)) to
ity Li(t)xi(t).

Controlling the movement and how the entropy arises

How to control ||x'(t)||1 = |[(V2®(x(t))) " (nl(t) + A(t))|1? A
particularly pleasant inequality would be to relate this to say
nl(t) - x(t), in which case one would get a final regret bound of
the form (up to a multiplicative factor 1/(1 — n)):

Do (y; x(0)) -

Ignore for a moment the Lagrange multiplier)\(t) and assume that

d(x) =31 p(x;). We want to relate Y7 £;(t)/¢"(xi(t)) to
Som 1 Li(t)xi(t). Making them equal gives <D() = >, xilog x; with
corresponding dynamics:

x(t) = —mxi()(Ei(1) + (D).

In particular ||x'(t)[|1 < 2nf(t) - x(t).

Controlling the movement and how the entropy arises

How to control ||x'(t)||1 = |[(V2®(x(t))) " (nl(t) + A(t))|1? A
particularly pleasant inequality would be to relate this to say
nl(t) - x(t), in which case one would get a final regret bound of
the form (up to a multiplicative factor 1/(1 — n)):

Do (y; x(0)) -

Ignore for a moment the Lagrange multiplier)\(t) and assume that

d(x) =31 p(x;). We want to relate Y7 £;(t)/¢"(xi(t)) to
Som 1 Li(t)xi(t). Making them equal gives <D() = >, xilog x; with
corresponding dynamics:

x(t) = —mxi()(Ei(1) + (D).

In particular ||x'(t)[|1 < 2nf(t) - x(t).
We note that this algorithm is exactly a continuous time version of
the MW studied at the beginning of the first lecture.

The more classical discrete-time algorithm and analysis
Ignoring the Lagrangian and assuming ¢'(t) = 0 one has

0 Do(yi x(1)) = V2O (x(1))[x'(t), X' (1)] = n* (V20 (x(£))) " (1), (1)] -

The more classical discrete-time algorithm and analysis
Ignoring the Lagrangian and assuming ¢'(t) = 0 one has

0 Do(yi x(1)) = V2O (x(1))[x'(t), X' (1)] = n* (V20 (x(£))) " (1), (1)] -

Thus provided that the Hessian of ® is well-conditioned on the
scale of a mirror step, one expects a discrete time analysis to give
a regret bound of the form (with the notation

[hllx = /V2(x)[h, h])

)

Do (y; x1

Dolyixt) 4 5~ a2...
n t=1

The more classical discrete-time algorithm and analysis
Ignoring the Lagrangian and assuming ¢'(t) = 0 one has

0 Do(yi x(1)) = V2O (x(1))[x'(t), X' (1)] = n* (V20 (x(£))) " (1), (1)] -

Thus provided that the Hessian of ® is well-conditioned on the
scale of a mirror step, one expects a discrete time analysis to give
a regret bound of the form (with the notation

[hllx = /V2(x)[h, h])

)

Do (y; x1

Dolyixt) 4 5~ a2...
n t=1

Theorem
The above is valid with a factor 2/c on the second term, provided
that the following implication holds true for any y; € R",

Vo(ye) € [VO(xt), VO(xt) — nl] = V2D(y;) = cV2d(x;).

For FTRL one instead needs this for any y; € [x¢, Xe+1].

MW is mirror descent with the negentropy

Let ®(x) = >_7 ;(xilogx; — x;) and K = A,. One has
V&(x) = log(x;) and thus the update step in the dual looks like:

VO(y:) = VO(xt) — 0l < yie = xip exp(—nle(i)) .

MW is mirror descent with the negentropy

Let ®(x) = >_7 ;(xilogx; — x;) and K = A,. One has
V&(x) = log(x;) and thus the update step in the dual looks like:

VO(y:) = VO(xt) — 0l < yie = xip exp(—nle(i)) .

Furthermore the projection step to K amounts simply to a
renormalization. Indeed VDo (x,y) = >.7_; log(x;/yi) and thus

p = argmin Do (x, y) < 3u € R :log(pi/yi) = u, Vi € [n].
x€EA,

MW is mirror descent with the negentropy

Let ®(x) = >_7 ;(xilogx; — x;) and K = A,. One has
V&(x) = log(x;) and thus the update step in the dual looks like:

VO(y:) = VO(xt) — 0l < yie = xip exp(—nle(i)) .

Furthermore the projection step to K amounts simply to a
renormalization. Indeed VDo (x,y) = >.7_; log(x;/yi) and thus

p= argrgin Do(x,y) < 3p € R :log(pi/yi) = p, Vi € [n].
XEAp
The analysis considers the potential Do (i*, pt) = — log(p:(i*)),
which in fact exactly corresponds to what we did in the second
slide of the first lecture.

MW is mirror descent with the negentropy

Let ®(x) = >_7 ;(xilogx; — x;) and K = A,. One has
V&(x) = log(x;) and thus the update step in the dual looks like:

VO(y:) = VO(xt) — 0l < yie = xip exp(—nle(i)) .

Furthermore the projection step to K amounts simply to a
renormalization. Indeed VDo (x,y) = >.7_; log(x;/yi) and thus

p = argmin Do (x, y) < 3u € R :log(pi/yi) = u, Vi € [n].
x€EA,

The analysis considers the potential Do (i*, pt) = — log(p:(i*)),
which in fact exactly corresponds to what we did in the second
slide of the first lecture.

Note also that the well-conditioning comes for free when (i) > 0,
and in general one just needs ||n¢|lo to be O(1).

Propensity score for the bandit game _
Key idea: replace ¢; by /; such that E; p,¢; = {;. The propensity
score normalized estimator is defined by:

ft("f)

Zt(l) B pe(i)

1{i =i}

Propensity score for the bandit game _
Key idea: replace ¢; by /; such that E; p,¢; = {;. The propensity
score normalized estimator is defined by:

Ce(it)
pe(i)

The Exp3 strategy corresponds to doing MW with those
estimators. Its regret is upper bounded by,

.
~ Iog
EY (pe—a,te) =EY (pr—q,) <)4 nEZ 1€ell e
t=1

where Hh”,%,* = >0, p(i)h(i)2.

Gy = i = i)

Propensity score for the bandit game _
Key idea: replace ¢; by /; such that E; p,¢; = {;. The propensity
score normalized estimator is defined by:

Ce(it)
pe(i)

The Exp3 strategy corresponds to doing MW with those
estimators. Its regret is upper bounded by,

.
EY (p:—q,t Ezm—q’?)ﬁ
t=1

where Hh”,%* = Y7, p(i)h(i)%. Amazingly the variance term is
automatically controlled:

I " 1{i=i
Eiope S pe()ie()? < Bipp 30 LU =0t _
i=1

1 Pt(/t)

Gy = i = i)

+77EZ 1Eel3

Propensity score for the bandit game _
Key idea: replace ¢; by /; such that E; p,¢; = {;. The propensity
score normalized estimator is defined by:

Ce(it)
pe(i)

The Exp3 strategy corresponds to doing MW with those
estimators. Its regret is upper bounded by,

Gy = i = i)

Ez<pt_q;€t>:EZ<pt_q7Z>§ +77EZH£ Hpt*v

where Hh”,%* = Y7, p(i)h(i)%. Amazingly the variance term is
automatically controlled:

I " 1{i=i
Eiope S pe()ie()? < Bipp 30 LU =0t _
i=1

1 Pt(/t)

Thus with n = y/nlog(n)/ T one gets Rt < 2+/Tnlog(n).

Simple extensions

» Removing the extraneous +/log(n)

Contextual bandit

v

Bandit with side information

v

v

Different scaling per actions

More subtle refinements

» Sparse bandit

» Variance bounds

» First order bounds

> Best of both worlds

» Impossibility of v/ T with switching cost
» Impossibility of oracle models

» Knapsack bandits

